Publications

Publications

Foundations

Natural Language Processing

S. Nayak, C. Schuler, D. Saha, & T. Baumann. (2022). A Deep Dive Into Neural Synchrony Evaluation for Audio-visual Translation. International Conference on Multimodal Interaction. International Conference on Multimodal Interaction (ICMI), Bengaluru India. https://doi.org/10.1145/3536221.3556621
A. Windbuhler, S. Okkesim, O. Christ, S. Mottaghi, S. Rastogi, M. Schmuker, T. Baumann, & U. G. Hofmann. (2022). Machine Learning Approaches to Classify Anatomical Regions in Rodent Brain from High Density Recordings. 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, Scotland, United Kingdom. https://doi.org/10.1109/EMBC48229.2022.9871702
T. Baumann, & S. Ashutosh. (2021). Evaluating Heuristics for Audio-Visual Translation. Proceedings of the Conference on Computational Humanities Research 2021. http://ceur-ws.org/Vol-2989/short_paper46.pdf
N. Krüger, K. Fischer, P. Manoonpong, O. Palinko, L. Bodenhagen, T. Baumann, J. Kjærum, I. Rano, L. Naik, W. K. Juel, F. Haarslev, J. Ignasov, E. Marchetti, R. M. Langedijk, A. Kollakidou, K. C. Jeppesen, C. Heidtmann, & L. Dalgaard. (2021). The SMOOTH-Robot: A Modular, Interactive Service Robot. Frontiers in Robotics and AI, 8. https://doi.org/10.3389/frobt.2021.645639
S. Nayak, T. Baumann, S. Bhattacharya, A. Karakanta, M. Negri, & M. Turchi. (2020). See me Speaking? Differentiating on Whether Words are Spoken On Screen or Off to Optimize Machine Dubbing. Companion Publication of the 2020 International Conference on Multimodal Interaction. ICMI ’20: INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, Virtual Event Netherlands. https://doi.org/10.1145/3395035.3425640
T. Himaya, A. Sehr, T. Yoshida, & S. Hangai. (2020). Text/Language-Independent Unknown Speaker Rejection Method Using LSP Codes. IEEE 9th Global Conference on Consumer Electronics (GCCE). https://doi.org/10.1109/GCCE50665.2020.9291835
J. Reschke, & A. Sehr. (2017). Face Recognition with Machine Learning in OpenCV: Fusion of the results with the Localization Data of an Acoustic Camera for Speaker Identification. Applied Research Conference. http://arxiv.org/pdf/1707.00835
K. Kinoshita, M. Delcroix, S. Gannot, E. Habets, R. Haeb-Umbach, W. Kellermann, V. Leutnant, R. Maas, T. Nakatani, B. Raj, A. Sehr, & T. Yoshioka. (2016). A summary of the REVERB challenge: state-of-the-art and remaining challenges in reverberant speech processing research. EURASIP Journal on Advances in Signal Processing. https://doi.org/10.1186/s13634-016-0306-6
R. Maas, C. Huemmer, A. Sehr, & W. Kellermann. (2015). A Bayesian view on acoustic model-based techniques for robust speech recognition. EURASIP Journal on Advances in Signal Processing. https://doi.org/10.1186/s13634-015-0287-x

Mathematical Foundations of Neural Networks

S. Bock, & M. G. Weiß. (2023). U-Shape Phenomenon with Gaussian Noise and Clipped Inputs. International Conference on Information and Computer Technologies (ICICT). https://doi.org/10.1007/978-981-99-3043-2_45
S. Bock, & M. G. Weiß. (2019). Non-Convergence and Limit Cycles in the Adam optimizer. 2019 International Conference on Artificial Neural Networks ICANN. https://doi.org/10.1007/978-3-030-30484-3_20
S. Bock, & M. G. Weiß. (2019). A Proof of Local Convergence for the Adam Optimizer. 2019 International Joint Conference on Neural Networks (IJCNN). https://doi.org/10.1109/IJCNN.2019.8852239
S. Townley, A. Ilchmann, M. G. Weiß, W. McClements, A. C. Ruiz, & D. Prätzel-Wolters. (2000). Existence and Learning of Oscillations in Recurrent Neural Networks. IEEE Transactions on Neural Networks. https://doi.org/10.1109/72.822523
M. G. Weiß. (1998). Learning Periodic Signals with Recurrent Neural Networks. Journal of Applied Mathematics and Mechanics. https://doi.org/10.1002/zamm.199807815130
M. G. Weiß. (1997). Learning Oscillations Using Adaptive Control. International Conference on Artificial Neural Networks (ICANN). https://doi.org/10.1007/BFb0020176

Software Engineering

W. Mauerer, S. Klessinger, & S. Scherzinger. (2022). Beyond the Badge: Reproducibility Engineering as a Lifetime Skill. SEENG@International Conference on Software Engineering (ICSE). https://doi.org/10.1145/3528231.3528359
L. Grabinger, F. Hauser, & J. Mottok. (2022). Accessing the Presentation of Causal Graphs and an Application of Gestalt Principles with Eye Tracking. In Proceedings of the 29th IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER 2022). 29th IEEE, New York, NY, USA. https://doi.org/10.1109/SANER53432.2022.00153
W. Mauerer, M. Joblin, D. A. Tamburri, C. Paradis, R. Kazman, & Sven Apel. (2021). In Search of Socio-Technical Congruence: A Large-Scale Longitudinal Study. IEEE Transactions on Software Engineering. https://doi.org/10.1109/TSE.2021.3082074
F. Hauser, S. Schreistetter, R. Reuter, J. Mottok, H. Gruber, K. Holmqvist, & N. Schorr. (2020). Code reviews in C++: Preliminary results from an eye tracking study. Proceedings of the ACM Eye Tracking Research and Application. https://doi.org/10.1145/3379156.3391980
R. Ramsauer, L. Bulwahn, D. Lohmann, & W. Mauerer. (2020). The Sound of Silence: Mining Security Vulnerabilities from Secret Integration Channels in Open-Source Projects. Proceedings of the 12th Cloud Computing Security Workshop (CCSW ’20). https://doi.org/10.1145/3411495.3421360
W. Mauerer, & S. Scherzinger. (2020). Educating Future Software Architects in the Art and Science of Analysing Software Data. Proc. SEUH Workshop. http://ceur-ws.org/Vol-2531/paper10.pdf
R. Ramsauer, D. Lohmann, & W. Mauerer. (2019). The List is the Process: Reliable Pre-Integration Tracking of Commits on Mailing Lists. Proceedings of the 41st International Conference on Software Engineering (ICSE ’19). https://doi.org/10.1109/ICSE.2019.00088
I. Hutzler, F. Hauser, R. Reuter, J. Mottok, & H. Gruber. (2018). Will the Noun/Verb Analysis be Used to Generate Class Diagrams? An Eye Tracking Study. 11th annual International Conference of Education, Research and Innovation, Seville, Spain. https://doi.org/10.21125/iceri.2018.1103
F. Hauser, M. Reiß, M. Nivala, J. Mottok, & H. Gruber. (2017). Eye Tracking Applied: Visual Expertise in Code Reviews. International Conference on Education and New Learning Technologies, Barcelona, Spain. https://doi.org/10.21125/edulearn.2017.1084
M. Joblin, S. Apel, C. Hunsen, & W. Mauerer. (2017). Classifying Developers into Core and Peripheral: An Empirical Study on Count and Network Metrics. 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE). https://doi.org/10.1109/icse.2017.23
M. Nivala, F. Hauser, J. Mottok, & H. Gruber. (2016). Developing visual expertise in software engineering: An eye tracking study. Proceedings of the IEEE EDUCON 2016. IEEE EDUCON 2016, Abu Dhabi, UAE. https://doi.org/10.1109/EDUCON.2016.7474614
M. Joblin, S. Apel, & Wolfgang Mauerer. (2016). Evolutionary trends of developer coordination: a network approach. Empirical Software Engineering. https://doi.org/10.1007/s10664-016-9478-9
M. Joblin, W. Mauerer, S. Apel, J. Siegmund, & D. Riehle. (2015). From Developer Networks to Verified Communities: A Fine-Grained Approach. 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering. https://doi.org/10.1109/icse.2015.73

Safety & Security

N. Weiß, E. Pozzobon, J. Mottok, & V. Matoušek. (2021). Automated Reverse Engineering of CAN Protocols. Neural Network World. https://doi.org/10.14311/NNW.2021.31.015
A. Rudolph, S. Voget, & J. Mottok. (2018). A consistent safety case argumentation for artificial intelligence in safety related automotive systems. ERTS 2018, Toulouse, France. https://hal.science/hal-02156048

Quantum AI

T. Winker, S. Groppe, V. J. E. Uotila, Z. Yan, J. Lu, M. Franz, & W. Mauerer. (2023). Quantum Machine Learning: Foundation, New Techniques, and Opportunities for Database Research. Proceedings of ACM SIGMOD/PODS International Conference on Management of Data. https://doi.org/10.1145/3555041.3589404
W. Mauerer, & S. Scherzinger. (2022). 1-2-3 Reproducibility for Quantum Software Experiments. Q-SANER@IEEE International Conference on Software Analysis, Evolution and Reengineering. https://doi.org/10.1109/SANER53432.2022.00148
M. Franz, L. Wolf, M. Periyasamy, C. Ufrecht, D. D. Scherer, A. Plinge, C. Mutschler, & W. Mauerer. (2022). Uncovering Instabilities in Variational-Quantum Deep Q-Networks. Journal of The Franklin Institute. https://doi.org/10.1016/j.jfranklin.2022.08.021
M. Schönberger, M. Franz, S. Scherzinger, & Wolfgang Mauerer. (2022). Peel | Pile? Cross-Framework Portability of Quantum Software. QSA@IEEE International Conference on Software Architecture (ICSA). https://doi.org/10.1109/ICSA-C54293.2022.00039
A. Bayerstadler, G. Becquin, J. Binder, T. Botter, H. Ehm, T. Ehmer, M. Erdmann, Norbert Gaus, Philipp Harbach, Maximilian Hess, Johannes Klepsch, Martin Leib, Sebastian Luber, Andre Luckow, Maximilian Mansky, Wolfgang Mauerer, Florian Neukart, Christoph Niedermeier, Lilly Palackal, … Fabian Winter. (2021). Industry Quantum Computing Applications. EPJ Quantum Technology. https://doi.org/10.1140/epjqt/s40507-021-00114-x

Sensor Technology

J. Weindl, M. G. Ehrnsperger, A. Prasetiadi, & T. F. Eibert. (2022). Interdigital Resonators in Wideband Ridged-Waveguide Filters. Advances in Radio Science, 20. https://doi.org/10.5194/ars-20-29-2023
M. G. Ehrnsperger, M. Noll, U. Siart, & T. F. Eibert. (2021). Background and Clutter Removal Techniques for Ultra Short Range Radar. 78–81. https://doi.org/10.1109/EuRAD48048.2021.00031
M. G. Ehrnsperger, M. Noll, S. Punzet, U. Siart, & T. F. Eibert. (2021). Dynamic Eigenimage Based Background and Clutter Suppression for Ultra Short-Range Radar. Advances in Radio Science, 19, 71–77. https://doi.org/10.5194/ars-19-71-2021
M. G. Ehrnsperger, T. Brenner, U. Siart, & T. F. Eibert. (2020). Real-Time Gesture Recognition with Shallow Convolutional Neural Networks Employing an Ultra Low Cost Radar System. German Microwave Conference. https://ieeexplore.ieee.org/document/9080241
J. Kornprobst, T. J. Mittermaier, R. A. M. Mauermayer, G. F. Hamberger, M. G. Ehrnsperger, B. Lehmeyer, M. T. Ivrlac, U. Imberg, T. F. Eibert, & J. A. Nossek. (2020). Compact Uniform Circular Quarter-Wavelength Monopole Antenna Arrays with Wideband Decoupling and Matching Networks. IEEE Transactions on Antennas and Propagation, 69, 769–783. https://doi.org/10.1109/TAP.2020.3016422
M. G. Ehrnsperger, U. Siart, M. Moosbühler, E. Daporta, & T. F. Eibert. (2019). Signal Degradation through Sediments on Safety-Critical Radar Sensors. Advances in Radio Science, 17, 91–100. https://doi.org/10.5194/ars-17-91-2019
M. G. Ehrnsperger, H. L. Hoese, U. Siart, & T. F. Eibert. (2019). Performance Investigation of Machine Learning Algorithms for Simple Human Gesture Recognition employing an Ultra Low Cost Radar System. Kleinheubacher Tagung. https://ieeexplore.ieee.org/document/8890169
A. Gschossmann, S. Jobst, J. Mottok, & R. Bierl. (2019). A Measure of Confidence of Artificial Neural Network Classifiers. ARCS Workshop 2019; 32nd International Conference on Architecture of Computing Systems. ARCS Workshop 2019; 32nd International Conference on Architecture of Computing Systems. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8836211&isnumber=8836190
M. G. Ehrnsperger, T. Brenner, H. L. Hoese, U. Siart, & T. F. Eibert. (n.d.). Real-Time Gesture Detection Based on Machine Learning Classification of Continuous Wave Radar Signals. IEEE Sensors Journal, 21, 8310–8322. https://doi.org/10.1109/JSEN.2020.3045616
T. Rück, M. Müller, S. Jobst, S. Weigl, J. Pangerl, R. Bierl, & F. Matysik. (n.d.). Digital Twin of a photoacoustic trace gas sensor for monitoring methane in complex gas compositions. Sensors and Actuators B: Chemical. https://doi.org/10.1016/j.snb.2022.133119

Production

Planning

A. Kaps, T. Lehrer, I. Lepenies, M. Wagner, & F. Duddeck. (2023). Multi-Fidelity Optimization of Metal Sheets Concerning Manufacturability in Deep-Drawing Processes. Structural and Multidisciplinary Optimization, 66.8. https://doi.org/10.1007/s00158-023-03631-8
T. Lehrer, P. Stocker, F. Duddeck, & M. Wagner. (2023). Comparison of Low- vs. High-Dimensional Machine Learning Approaches for Sheet Metal Drawability Assessment. Third International Conference on Computational Science and AI in Industry (CSAI). Third International Conference on Computational Science and AI in Industry (CSAI). https://doi.org/10.35096/othr/pub-6477
T. Lehrer, A. Kaps, I. Lepenies, F. Duddeck, & M. Wagner. (2023). 2S-ML: A Simulation-Based Classification and Regression Approach for Drawability Assessment in Deep Drawing. International Journal of Material Forming, 16.5. https://doi.org/10.1007/s12289-023-01770-3
F. Schmid, T. Wild, J. Schneidewind, T. Vogl, L. Schuhegger, & S. Galka. (2022). Simulation Based Approach for Reconfiguration and Ramp Up Scenario Analysis in Factory Planning. 2022 Winter Simulation Conference (WSC). 2022 Winter Simulation Conference (WSC), Singapore. https://doi.org/10.1109/WSC57314.2022.10015310

Predictive Maintenance

R. Wöstmann, P. Schlunder, F. Temme, R. Klinkenberg, J. Kimberger, A. Spichtinger, M. Goldhacker, & J. Deuse. (2020). Conception of a Reference Architecture for Machine Learning in the Process Industry. 2020 IEEE International Conference on Big Data (Big Data), 1726–1735. https://doi.org/10.1109/BigData50022.2020.9378290

Robotics and Control

M. Weiß. (2021). Optimization of Cartesian Tasks with Configuration Selection. 2nd IMA Conference on Mathematics of Robotics. https://doi.org/10.1007/978-3-030-91352-6_16
M. G. Weiß. (2019). Optimal Object Placement Using a Virtual Axis. International Symposium on Advances in Robot Kinematics. https://doi.org/10.1007/978-3-319-93188-3_14
M. G. Weiß. (2015). A Class of 6R Robots and Poses with 16 Analytical Solutions. Proceedings of the IMA Conference on Mathematics of Robotics. https://cdn.ima.org.uk/wp/wp-content/uploads/2017/12/Weiss-A-Class-of-6R-Robots-and-Poses-with-16-Analytical-Solutions.pdf
M. Kurze, M. G. Weiß, & M. Otter. (2006). Methods and Tools to Design and Test Robot Control Systems. 37th International Symposium on Robotics (ISR). https://www.researchgate.net/publication/224928821_Methods_and_Tools_to_Design_and_Test_Robot_Control_Systems

Energy

Smart Meters

M. Melzer, J. Dunnweber, & T. Baumann. (2022). Towards Smart Home Data Interpretation Using Analogies to Natural Language Processing. 2022 IEEE International Conference on Smart Internet of Things (SmartIoT). 2022 IEEE International Conference on Smart Internet of Things (SmartIoT). https://doi.org/10.1109/SmartIoT55134.2022.00020

Mobility

Driver Assistance Systems

J. Reschke. (2021). Fahrerintentionserkennung zur lichtbasierten Kommunikation mit Fußgängern. Doctoral Thesis. https://publikationen.bibliothek.kit.edu/1000140184
J. Reschke, & M. Klaußner. (2021). Explicit and Implicit Communication for Automated Vehicles. Proceedings of the 14th International Symposium on Automotive Lighting (ISAL). https://www.utzverlag.de/assets/pdf/44953dbl.pdf
J. Reschke, S. Berlitz, & C. Neumann. (2020). Personalised neural networks for a driver intention prediction: communication as enabler for automated driving. Advanced Optical Technologies, 9(6). https://doi.org/https://doi.org/10.1515/aot-2020-0035
J. Reschke, T. Höß, B. Schleyer, S. Berlitz, & C. Neumann. (2019). How Vehicles Learn to Display Symbols to Pedestrians. Proceedings of the 13th International Symposium on Automotive Lighting (ISAL). https://www.utzverlag.de/catalog/book/44817
J. Reschke, S. Prösl, M. Hamm, & C. Neumann. (2018). Assistance System for Vehicle-Pedestrian-Interaction: Deep Learning and Driver Intention Prediction. SIA VISION. https://wiki.unece.org/download/attachments/75531441/AVSR-02-16e.pdf?api=v2

Mobility Concepts

V. Dahmen, S. Weikl, & K. Bogenberger. (2024). Interpretable Machine Learning for Mode Choice Modeling on Tracking-Based Revealed Preference Data. Transportation Research Record: Journal of the Transportation Research Board. https://doi.org/10.1177/03611981241246973
M. Rostami-Shahrbabak, S. Weikl, T. Niels, & K. Bogenberger. (2023). Modeling Vehicle Flocking in Lane-Free Automated Traffic. Transportation Research Record: Journal of the Transportation Research Board. https://doi.org/10.1177/03611981231159405
C. Hardt, S. Weikl, Y. Zhang, K. Lippoldt, & K. Bogenberger. (2022). Empirical Analysis of Free-Floating Carsharing Systems in Munich and Berlin. Transportation Research Board 101st Annual Meeting. https://www.researchgate.net/publication/357900050_Empirical_Analysis_of_Free-Floating_Carsharing_Systems_in_Munich_and_Berlin_TRBAM-22-02706
M. Rostami-Shahrbabak, S. Weikl, M. Akbarzadeh, & K. Bogenberger. (2022). A Two-Layer Approach for Vehicular Flocking in Lane-Free Environment. 11th Triennal Symposium on Transportation Analysis (TRISTAN). https://tristan2022.org/proceedings
S. Haimerl, C. Tschernitz, T. Schiller, C. Weig, S. Galka, & U. Briem. (2022). Development of a Simulation Framework for Urban Ropeway Systems and Analysis of the Planned Ropeway Network in Regensburg, Germany. Proceedings of the Winter Simulation Conference. https://doi.org/https://dl.acm.org/doi/10.5555/3586210.3586326
T. Stadler, A. Sarkar, & J. Dünnweber. (2021). Bus Demand Forecasting for Rural Areas Using XGBoost and Random Forest Algorithm. Computer Information Systems and Industrial Management. https://doi.org/10.1007/978-3-030-84340-3_36
S. Weikl, & K. Bogenberger. (2019). Integrated Relocation Model for Free-Floating Carsharing Systems: Field Trial Results. Transportation Research Record 2563,. https://doi.org/10.3141/2536-03
S. Weikl, K. Bogenberger, & N. Geroliminis. (2016). Simulation Framework for Proactive Relocation Strategies in Free-Floating Carsharing Systems. Transportation Research Board 95th Annual Meeting. https://mediatum.ub.tum.de/node?id=1631662
S. Weikl. (2016). A Mesoscopic Relocation Model for Free-Floating Carsharing Systems. Doctoral Thesis. https://athene-forschung.unibw.de/doc/112725/112725.pdf
S. Weikl, & K. Bogenberger. (2015). A Practice-Ready Relocation Model for Free-Floating Carsharing Systems with Electric Vehicles – Mesoscopic Approach and Field Trial Results. Transportation Research Part C: Emerging Technologies. https://doi.org/10.1016/j.trc.2015.06.024
S. Schmöller, S. Weikl, J. Müller, & K. Bogenberger. (2015). Empirical Analysis of Free-Floating Carsharing Usage: The Munich and Berlin Case. Transportation Research Part C: Emerging Technologies. https://doi.org/10.1016/j.trc.2015.03.008
S. Schmöller, S. Weikl, J. Müller, & K. Bogenberger. (2014). Empirical Data Analysis of Free-Floating Carsharing System. Transportation Research Board 93rd Annual Meeting. https://trid.trb.org/View/1289361
S. Weikl, & K. Bogenberger. (n.d.). Relocation Strategies and Algorithms for Free-Floating Car Sharing Systems. IEEE Intelligent Transportation Systems Magazine, 5. https://doi.org/10.1109/MITS.2013.2267810
S. Weikl, & P. Mayer. (n.d.). Data-Driven Quality Assessment of Cycling Networks. Frontiers in Future Transportation. https://doi.org/10.3389/ffutr.2023.1127742

Medicine

Survey

C. Palm. (2023). History, Core Concepts, and Role of AI in Clinical Medicine. In M. F. Byrne, N. Parsa, A. T. Greenhill, D. Chahal, O. Ahmad, & U. Bargci (Eds.), AI in Clinical Medicine: A Practical Guide for Healthcare Professionals. https://doi.org/10.1002/9781119790686.ch5

Medical Image Processing

R. Mendel, T. Rueckert, D. Wilhelm, D. Rueckert, & C. Palm. (2024). Motion-Corrected Moving Average: Including Post-Hoc Temporal Information for Improved Video Segmentation. https://doi.org/10.48550/arXiv.2403.03120
T. Rueckert, M. Rieder, H. Feussner, D. Wilhelm, D. Rueckert, & C. Palm. (2024). Smoke Classification in Laparoscopic Cholecystectomy Videos Incorporating Spatio-temporal Information. In A. Maier, T. M. Deserno, H. Handels, K. Maier-Hein, C. Palm, & T. Tolxdorff (Eds.), Bildverarbeitung für die Medizin 2024: Proceedings, German Workshop on Medical Image Computing, March 10-12, 2024, Erlangen (pp. 298–303). https://doi.org/10.1007/978-3-658-44037-4_78
L. A. Souza Jr., A. G.C. Pacheco, L. A. Passos, M. C. S. Santana, R. Mendel, A. Ebigbo, A. Probst, H. Messmann, C. Palm, & J. P. Papa. (2024). DeepCraftFuse: visual and deeply-learnable features work better together for esophageal cancer detection in patients with Barrett’s esophagus. Neural Computing and Applications. https://doi.org/10.1007/s00521-024-09615-z
M. Gutbrod, B. Geisler, D. Rauber, & C. Palm. (2024). Data Augmentation for Images of Chronic Foot Wounds. In A. Maier, T. M. Deserno, H. Handels, K. Maier-Hein, C. Palm, & T. Tolxdorff (Eds.), Bildverarbeitung für die Medizin 2024: Proceedings, German Workshop on Medical Image Computing, March 10-12, 2024, Erlangen (pp. 261–266). https://doi.org/10.1007/978-3-658-44037-4_71
T. Rueckert, D. Rueckert, & C. Palm. (2024). Corrigendum to “Methods and datasets for segmentation of minimally invasive surgical instruments in endoscopic images and videos: A review of the state of the art” [Comput. Biol. Med. 169 (2024) 107929]. Computers in Biology and Medicine. https://doi.org/10.1016/j.compbiomed.2024.108027
S. Hammer, D. W. Nunes, M. Hammer, F. Zeman, M. Akers, A. Götz, A. Balla, M. C. Doppler, C. Fellner, N. D. P. B. Silva, S. Thurn, N. Verloh, C. Stroszczynski, W. A. Wohlgemuth, C. Palm, & W. Uller. (2024). Deep learning-based differentiation of peripheral high-flow and low-flow vascular malformations in T2-weighted short tau inversion recovery MRI. Clinical Hemorheology and Microcirculation, 1–15. https://doi.org/10.3233/CH-232071
T. Rückert, D. Rückert, & C. Palm. (2024). Methods and datasets for segmentation of minimally invasive surgical instruments in endoscopic images and videos: A review of the state of the art. Computers in Biology and Medicine, 169. https://doi.org/10.1016/j.compbiomed.2024.107929
J. Frikel, & P. Bauer. (2023). A Deep Learning Based ρ-Filtered Layergram Reconstruction Method for Computed Tomography. 21st International Conference of Numerical Analysis and Applied Mathematics.
M. W. Scheppach, R. Mendel, A. Probst, S. Nagl, M. Meinikheim, H. C. Yip, L. H. S. Lau, P. Y. W. Chiu, C. Palm, H. Messmann, & A. Ebigbo. (2023). Effekt eines Künstliche Intelligenz (KI) – Algorithmus auf die Gefäßdetektion bei third space Endoskopien. Zeitschrift Für Gastroenterologie, 61. https://doi.org/10.1055/s-0043-1771980
S. Zellmer, D. Rauber, A. Probst, T. Weber, S. Nagl, S., C. Römmele, E. Schnoy, C. Palm, H. Messmann, & A. Ebigbo. (2023). Verwendung künstlicher Intelligenz bei der Detektion der Papilla duodeni major. Zeitschrift Für Gastroenterologie, 61. https://doi.org/10.1055/s-0043-1772000
M. Meinikheim, R. Mendel, A. Probst, M. W. Scheppach, S. Nagl, E. Schnoy, C. Römmele, F. Prinz, J. Schlottmann, H. Messmann, C. Palm, & A. Ebigbo. (2023). Einfluss von Künstlicher Intelligenz auf die Performance von niedergelassenen Gastroenterolog:innen bei der Beurteilung von Barrett-Ösophagus. Zeitschrift Für Gastroenterologie, 61. https://doi.org/10.1055/s-0043-1771711
T. Rückert, M. Rieder, D. Rauber, M. Xiao, E. Humolli, H. Feussner, D. Wilhelm, & C. Palm. (2023). Augmenting instrument segmentation in video sequences of minimally invasive surgery by synthetic smoky frames. International Journal of Computer Assisted Radiology and Surgery, 18, S54–S56. https://doi.org/10.1007/s11548-023-02878-2
R. Mendel, D. Rauber, & C. Palm. (2023). Exploring the Effects of Contrastive Learning on Homogeneous Medical Image Data. Bildverarbeitung Für Die Medizin 2023: Proceedings, German Workshop on Medical Image Computing, July 2- 4, 2023, Braunschweig, 128–13. https://doi.org/10.1007/978-3-658-41657-7
M. W. Scheppach, D. Rauber, J. Stallhofer, A. Muzalyova, V. Otten, C. Manzeneder, T. Schwamberger, J. Wanzl, J. Schlottmann, V. Tadic, A. Probst, E. Schnoy, C. Römmele, C. Fleischmann, M. Meinikheim, S. Miller, B. Märkl, C. Palm, H. Messmann, & A. Ebigbo. (2023). Performance comparison of a deep learning algorithm with endoscopists in the detection of duodenal villous atrophy (VA). Endoscopy, 55. https://doi.org/10.1055/s-0043-1765421
M. W. Scheppach, R. Mendel, A. Probst, D. Rauber, T. Rueckert, M. Meinikheim, C. Palm, H. Messmann, & A. Ebigbo. (2023). Real-time detection and delineation of tissue during third-space endoscopy using artificial intelligence (AI). Endoscopy, 55, S53–S54. https://doi.org/10.1055/s-0043-1765128
M. Meinikheim, R. Mendel, A. Probst, M. W. Scheppach, E. Schnoy, S. Nagl, C. Römmele, F. Prinz, J. Schlottmann, D. Golger, C. Palm, H. Messmann, & A. Ebigbo. (2023). AI-assisted detection and characterization of early Barrett’s neoplasia: Results of an Interim analysis. Endoscopy, 55. https://doi.org/10.1055/s-0043-1765437
M. W. Scheppach, D. Rauber, J. Stallhofer, A. Muzalyova, V. Otten, C. Manzeneder, T. Schwamberger, J. Wanzl, J. Schlottmann, V. Tadic, A. Probst, E. Schnoy, & C. Palm. (2023). Detection of duodenal villous atrophy on endoscopic images using a deep learning algorithm. Gastrointestinal Endoscopy. https://doi.org/10.1016/j.gie.2023.01.006
R. Mendel, D. Rauber, L. A. de Souza Jr., J. P. Papa, & C. Palm. (2023). Error-Correcting Mean-Teacher: Corrections instead of consistency-targets applied to semi-supervised medical image segmentation. Computers in Biology and Medicine. https://doi.org/10.1016/j.compbiomed.2023.106585
A. Ebigbo, R. Mendel, M. W. Scheppach, A. Probst, N. Shahidi, F. Prinz, C. Fleischmann, C. Römmele, S. K. Gölder, G. Braun, D. Rauber, T. Rückert, L. A. de Souza Jr., J. P. Papa, M. Byrne, C. Palm, & H. Messmann. (2022). Vessel and tissue recognition during third-space endoscopy using a deep learning algorithm. Gut. https://doi.org/10.1136/gutjnl-2021-326470
C. Römmele, R. Mendel, C. Barrett, H. Kiesl, D. Rauber, T. Rückert, L. Kraus, J. Heinkele, C. Dhillon, B. Grosser, F. Prinz, J. Wanzl, C. Fleischmann, S. Nagl, E. Schnoy, J. Schlottmann, E. S. Dellon, H. Messmann, C. Palm, & A. Ebigbo. (2022). An artificial intelligence algorithm is highly accurate for detecting endoscopic features of eosinophilic esophagitis. Scientific Reports. https://doi.org/10.1038/s41598-022-14605-z
L. A. de Souza Jr., R. Mendel, S. Strasser, A. Ebigbo, A. Probst, H. Messmann, J. P. Papa, & C. Palm. (2021). Convolutional Neural Networks for the evaluation of cancer in Barrett’s esophagus: Explainable AI to lighten up the black-box. Computers in Biology and Medicine. https://doi.org/10.1016/j.compbiomed.2021.104578
J. Arribas, G. Antonelli, L. Frazzoni, L. Fuccio, A. Ebigbo, F. v. d. Sommen, N. Ghatwary, C. Palm, M. Coimbra, F. Renna, J. J. G. H. M. Bergman, P. Sharma, H. Messmann, C. Hassan, & M. J. Dinis-Ribeiro. (2021). Standalone performance of artificial intelligence for upper GI neoplasia: a meta-analysis. Gut. https://doi.org/10.1136/gutjnl-2020-321922
R. Mendel, L. A. de Souza Jr., D. Rauber, J. P. Papa, & C. Palm. (2020). Semi-supervised Segmentation Based on Error-Correcting Supervision. European Conference on Computer Vision (ECCV). https://doi.org/10.1007/978-3-030-58526-6_9
A. Ebigbo, R. Mendel, A. Probst, J. Manzeneder, F. Prinz, L. A. de Souza Jr., J. P. Papa, C. Palm, & H. Messmann. (2020). Real-time use of artificial intelligence in the evaluation of cancer in Barrett’s oesophagus. Gut. https://doi.org/10.1136/gutjnl-2019-319460
A. Ebigbo, R. Mendel, T. Rückert, L. Schuster, A. Probst, J. Manzeneder, F. Prinz, M. Mende, I. Steinbrück, S. Faiss, D. Rauber, L. A. de Souza Jr., J. P. Papa, P. Deprez, T. Oyama, A. Takahashi, S. Seewald, P. Sharma, M. F. Byrne, … H. Messmann. (2020). Endoscopic prediction of submucosal invasion in Barrett’s cancer with the use of Artificial Intelligence: A pilot Study. Endoscopy. https://doi.org/10.1055/a-1311-8570

Digital Models of the Human Body

M. Melzner, C. Pfeiffer, F. Suess, & S. Dendorfer. (2022). Musculoskeletal simulation of elbow stability for common injury patterns. Journal of Orthopaedic Research. https://doi.org/10.1002/jor.25460
M. Melzner, F. Süß, & S. Dendorfer. (2022). The impact of anatomical uncertainties on the predictions of a musculoskeletal hand model – a sensitivity study. Computer Methods in Biomechanics and Biomedical Engineering. https://doi.org/10.1080/10255842.2021.1940974
S. Auer, J. Schiebl, K. Iversen, D. S. Chander, M. Damsgaard, & S. Dendorfer. (2022). Biomechanical assessment of the design and efficiency of occupational exoskeletons with the AnyBody Modeling System. Zeitschrift Für Arbeitswissenschaft. https://doi.org/10.1007/s41449-022-00336-4
M. Weiherer, A. Eigenberger, B. Egger, V. Brébant, L. Prantl, & C. Palm. (2022). Learning the shape of female breasts: an open-access 3D statistical shape model of the female breast built from 110 breast scans. The Visual Computer. https://doi.org/10.1007/s00371-022-02431-3
C. Birkenmaier, & L. Krenkel. (2021). Convolutional Neural Networks for Approximation of Blood Flow in Artificial Lungs. Notes on Numerical Fluid Mechanics and Multidisciplinary Design. https://doi.org/10.1007/978-3-030-79561-0_43
L. Engelhardt, M. Melzner, L. Havelkova, P. Fiala, P. Christen, S. Dendorfer, & U. Simon. (2021). A new musculoskeletal AnyBody detailed hand model. Computer Methods in Biomechanics and Biomedical Engineering. https://doi.org/10.1080/10255842.2020.1851367
A. Saffert, M. Melzner, & S. Dendorfer. (2021). Biomechanical analysis of the right elevated glenohumeral joint in violinists during legato-playing. Technology and Health Care. https://doi.org/10.3233/THC-219001
M. Aurbach, J. Špička, F. Süß, J. Vychytil, L. Havelková, T. Ryba, & S. Dendorfer. (2020). Torus obstacle method as a wrapping approach of the deltoid muscle group for humeral abduction in musculoskeletal simulation. Journal of Biomechanics. https://doi.org/10.1016/j.jbiomech.2020.109864
E. D. Pieri, F. Atzori, S. J. Ferguson, S. Dendorfer, M. Leunig, & M. Aepli. (2020). Contact force path in total hip arthroplasty: effect of cup medialisation in a whole-body simulation. HIP International. https://doi.org/10.1177/1120700020917321
C. Birkenmeier. (2020). A hybrid computational approach for non-Newtonian blood flows using Euler-Euler modelling and deep regression. Doctoral Thesis. https://books.google.de/books?id=VA3yzgEACAAJ
M. Aurbach, J. Špička, F. Süß, & S. Dendorfer. (2020). Evaluation of musculoskeletal modelling parameters of the shoulder complex during humeral abduction above 90°. Journal of Biomechanics. https://doi.org/10.1016/j.jbiomech.2020.109817

Neuroimaging/Brain Computer Interface

S. Wein, G. Deco, A. M. Tomé, M. Goldhacker, W. M. Malloni, M. W. Greenlee, & E. W. Lang. (2021). Brain Connectivity Studies on Structure-Function Relationships: A Short Survey with an Emphasis on Machine Learning. Computational Intelligence and Neuroscience, 2021. https://doi.org/10.1155/2021/5573740
C. Ott, K. Rosengarth, C. Doenitz, J. Hoehne, C. Wendl, F. Dodoo-Schittko, E. Lang, N. O. Schmidt, & M. Goldhacker. (2021). Preoperative Assessment of Language Dominance through Combined Resting-State and Task-Based Functional Magnetic Resonance Imaging. Journal of Personalized Medicine, 11. https://doi.org/10.3390/jpm11121342
S. Wein, A. M. Tomé, M. Goldhacker, M. W. Greenlee, & E. W. Lang. (2020). A Constrained ICA-EMD Model for Group Level fMRI Analysis. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.00221
M. Goldhacker, A. M. Tomé, M. W. Greenlee, & E. W. Lang. (2018). Frequency-Resolved Dynamic Functional Connectivity Reveals Scale-Stable Features of Connectivity-States. Frontiers in Human Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00253
M. Goldhacker, P. Keck, A. Igel, E. W. Lang, & A. M. Tomé. (2017). A multi-variate blind source separation algorithm. Computer Methods and Programs in Biomedicine, 151. https://doi.org/10.1016/j.cmpb.2017.08.019
M.-C. Fellner, G. Volberg, K. J. Mullinger, M. Goldhacker, M. Wimber, M. W. Greenlee, & S. Hanslmayr. (2016). Spurious correlations in simultaneous EEG-fMRI driven by in-scanner movement. NeuroImage, 133. https://doi.org/10.1016/j.neuroimage.2016.03.031
M.-C. Fellner, G. Volberg, M. Wimber, M. Goldhacker, M. W. Greenlee, & S. Hanslmayr. (2016). Spatial mnemonic encoding: theta power decreases and medial temporal lobe BOLD increases co-occur during the usage of the method of loci. ENeuro, 3(6). https://doi.org/10.1523/ENEURO.0184-16.2016
K. Al-Subari, S. Al-Baddai, A. M. Tomé, M. Goldhacker, R. Faltermeier, & E. W. Lang. (2015). EMDLAB: A toolbox for analysis of single-trial EEG dynamics using empirical mode decomposition. Journal of Neuroscience Methods, 253. https://doi.org/10.1016/j.jneumeth.2015.06.020
M. Goldhacker, K. Rosengarth, T. Plank, & M. W. Greenlee. (2014). The effect of feedback on performance and brain activation during perceptual learning. Vision Research, 99. https://doi.org/10.1016/j.visres.2013.11.010
T. Plank, K. Rosengarth, C. Schmalhofer, M. Goldhacker, S. Brandl-Rühle, & M. W. Greenlee. (2014). Perceptual learning in patients with macular degeneration. Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.01189

Ethical, Legal and Social Aspects

Empirical Social Research

D. Frommeld, S. Haug, E. Currle, & K. Weber. (2022). Telepräsenzroboter in der Schlaganfallrehabilitation. Pflegezeitschrift. https://doi.org/10.1007/s41906-022-1251-7
U. Scorna, D. Frommeld, S. Haug, & K. Weber. (2022). Digitale Assistenzsysteme in der Altenpflege – Fluch oder Segen? Eine empirische Untersuchung zu Chancen, Risiken und Auswirkungen. In Organisationen in Zeiten der Digitalisierung. https://link.springer.com/10.1007/978-3-658-36514-1_12
U. Scorna, D. Frommeld, S. Haug, & K. Weber. (2022). Digitale Technik in der Pflege als Generallösung? Neue Perspektiven auf altersgerechte Assistenzsysteme. In Gegenwart und Zukunft sozialer Dienstleistungsarbeit. Chancen und Risiken der Digitalisierung in der Sozialwirtschaft. Springer VS.
S. Haug. (2021). Nutzung, Planung und Bewertung digitaler Assistenzsysteme in der Pflege: Ergebnisse einer Befragung von Führungskräften in ambulanten und stationären Einrichtungen. In Gute Technik für ein gutes Leben im Alter? https://doi.org/10.1515/9783839454695-008
S. Haug, & M. Vetter. (2021). Altersgerechtes Wohnen im Quartier: Das Beispiel Margaretenau Regensburg. https://doi.org/10.1007/s00548-020-00678-3
S. Haug, M. Vetter, & K. Weber. (2020). Gebäudesanierung zwischen Energieeffizienz und Sozialverträglichkeit: Zwei empirische Fallstudien. TATuP – Zeitschrift Für Technikfolgenabschätzung in Theorie Und Praxis. https://doi.org/10.14512/tatup.29.3.56
U. Scorna, K. Weber, & S. Haug. (2018). ELSI in Serious Games für die technikunterstützte medizinische Ausbildung: Das Beispiel HaptiVisT. Technische Unterstützungssysteme, Die Die Menschen Wirklich Wollen. Konferenzband.
K. Weber, & S. Haug. (2018). Ist automatisiertes Fahren nachhaltig? Zeitschrift Für Technikfolgenabschätzung in Theorie Und Praxis (TATuP). https://doi.org/10.14512/tatup.27.2.16
J. Höcherl, S. Niedersteiner, S. Haug, C. Pohlt, T. Schlegl, K. Weber, & T. Berlehner. (2016). Smart Workbench: Ein multimodales und bidirektionales Assistenzsystem für den industriellen Einsatz. Technische Unterstützungssysteme, Die Die Menschen Wirklich Wollen, Proceedingsband. https://www.researchgate.net/publication/311699737_Smart_Workbench_Ein_multimodales_und_bidirektionales_Assistenzsystem_fur_den_industriellen_Einsatz
D. Franz, U. Katzky, S. Neumann, J. Perret, M. Hofer, M. Huber, S. Schmitt-Rüth, S. Haug, K. Weber, M. Prinzen, C. Palm, & T. Wittenberg. (2016). Haptisches Lernen für Cochlea Implantationen. Konzept HaptiVisT-Projekt. 15. Jahrestagung Der Deutschen Gesellschaft Für Computer- Und Roboterassistierte Chirurgie (CURAC). https://curac.org/images/advportfoliopro/images/CURAC2016/CURAC%202016%20Tagungsband.pdf
S. Haug, L. Glashauser, B. Großmann, C. Pohlt, T. Schlegl, A. Wackerbarth, & K. Weber. (2016). Gamification im Anlernprozess am Industriearbeitsplatz – ein inklusiver Ansatz. Studie zur Entwicklung eines Anlerntutorials für ein gestengesteuertes teilautomatisiertes Assistenzsystem. Technische Unterstützungssysteme, Die Die Menschen Wirklich Wollen, Proceedingsband.

Ethics and Technology Impact

T. Kriza. (2023). Ethische Fragen der Digitalisierung und ihre Thematisierung in Forschung und Lehre an Hochschulen: Dimensionen von Transdisziplinarität. Interdisziplinarität in Der Hochschullehre. https://doi.org/10.3278/9783763974610
A. Sonar, & K. Weber. (2022). Künstliche Intelligenz und Gesundheit ‒ Ethische, philosophische und sozialwissenschaftliche Explorationen. Franz Steiner Verlag.
D. Schneider, A. Sonar, & K. Weber. (2022). Zwischen Automatisierung und ethischem Anspruch – Disruptive Effekte des KI-Einsatzes in und auf Professionen der Gesundheitsversorgung. Künstliche Intelligenz Im Gesundheitswesen. https://doi.org/10.1007/978-3-658-33597-7_14
K. Weber. (2020). Verunsicherung des ärztlichen Selbstverständnisses durch Künstliche Intelligenz? Ein Überblick über potenzielle Auswirkungen ihres Einsatzes im ärztlichen Alltag.
K. Weber. (2020). KI Gestern und Heute: Einsichten aus der Frühgeschichte der KI für aktuelle ethische Überlegungen zum Einsatz von KI in der Medizin. Arbeit, 29(2). https://doi.org/10.1515/arbeit-2020-0009
H. Gerhards, K. Weber, & U. Bittner. (2020). Machine Learning Healthcare Applications (ML-HCAs) are no stand-alone systems but part of an ecosystem – A broader ethical and health technology assessment approach is needed. The American Journal of Bioethics. https://doi.org/10.1080/15265161.2020.1820104
K. Weber. (2018). Computers as Omnipotent Instruments of Power: Hopes, Fears and Actual Change in Administration, Politics, and Society from the 1960s to 1980s. The ORBIT Journal. https://doi.org/10.29297/orbit.v2i1.97
K. Weber. (2018). Autonomie und Moralität als Zuschreibung. Maschinenethik. https://doi.org/10.1007/978-3-658-21083-0_12
K. Weber. (2018). Maschinenethik und Technikethik. Handbuch Maschinenethik. https://doi.org/10.1007/978-3-658-17483-5_10
K. Weber. (2013). What is it Like to Encounter an Autonomous Artificial Agent? AI & Society. https://doi.org/10.1007/s00146-013-0453-3
K. Weber. (1999). Simulation und Erklärung.
D. Schneider, & K. Weber. (n.d.). AI for decision support: What are possible futures, social impacts, regulatory options, ethical conundrums and agency constellations? Zeitschrift Für Technikfolgenabschätzung in Theorie Und Praxis (TATuP), 33(1). https://doi.org/10.14512/tatup.33.1.08
EN